Efficient Multi-Objective Simulation Metamodeling for Researchers

Author:

Ho Ken Jom1ORCID,Özcan Ender1ORCID,Siebers Peer-Olaf1ORCID

Affiliation:

1. School of Computer Science, University of Nottingham, Jubilee Campus, Nottingham NG8 1BB, UK

Abstract

Solving multiple objective optimization problems can be computationally intensive even when experiments can be performed with the help of a simulation model. There are many methodologies that can achieve good tradeoffs between solution quality and resource use. One possibility is using an intermediate “model of a model” (metamodel) built on experimental responses from the underlying simulation model and an optimization heuristic that leverages the metamodel to explore the input space more efficiently. However, determining the best metamodel and optimizer pairing for a specific problem is not directly obvious from the problem itself, and not all domains have experimental answers to this conundrum. This paper introduces a discrete multiple objective simulation metamodeling and optimization methodology that allows algorithmic testing and evaluation of four Metamodel-Optimizer (MO) pairs for different problems. For running our experiments, we have implemented a test environment in R and tested four different MO pairs on four different problem scenarios in the Operations Research domain. The results of our experiments suggest that patterns of relative performance between the four MO pairs tested differ in terms of computational time costs for the four problems studied. With additional integration of problems, metamodels and optimizers, the opportunity to identify ex ante the best MO pair to employ for a general problem can lead to a more profitable use of metamodel optimization.

Publisher

MDPI AG

Subject

Computational Mathematics,Computational Theory and Mathematics,Numerical Analysis,Theoretical Computer Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3