Methods to Optimize Carbon Footprint of Buildings in Regenerative Architectural Design with the Use of Machine Learning, Convolutional Neural Network, and Parametric Design

Author:

Płoszaj-Mazurek Mateusz,Ryńska Elżbieta,Grochulska-Salak Magdalena

Abstract

The analyzed research issue provides a model for Carbon Footprint estimation at an early design stage. In the context of climate neutrality, it is important to introduce regenerative design practices in the architect’s design process, especially in early design phases when the possibility of modifying the design is usually high. The research method was based on separate consecutive research works–partial tasks: Developing regenerative design guidelines for simulation purposes and for parametric modeling; generating a training set and a testing set of building designs with calculated total Carbon Footprint; using the pre-generated set to train a Machine Learning Model; applying the Machine Learning Model to predict optimal building features; prototyping an application for a quick estimation of the Total Carbon Footprint in the case of other projects in early design phases; updating the prototyped application with additional features; urban layout analysis; preparing a new approach based on Convolutional Neural Networks and training the new algorithm; and developing the final version of the application that can predict the Total Carbon Footprint of a building design based on basic building features and on the urban layout. The results of multi-criteria analyses showed relationships between the parameters of buildings and the possibility of introducing Carbon Footprint estimation and implementing building optimization at the initial design stage.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

Reference35 articles.

1. Building and Climate Change: Summary of Deicing-Makers,2009

2. A Definition of ‘Carbon Footprint’;Wiedmann,2008

3. EN 15978:2011 Sustainability of Construction Works—Assessment of Environmental Performance of Buildings—Calculation Method,2011

4. Smart Energy Solutions as an Indispensable Multi-Criteria Input for a Coherent Urban Planning and Building Design Process—Two Case Studies for Smart Office Buildings in Warsaw Downtown Area

5. A Parametric Method for Building Design Optimization Based on Life Cycle Assessment;Hollberg,2016

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3