Catalytic Electrochemical Water Splitting Using Boron Doped Diamond (BDD) Electrodes as a Promising Energy Resource and Storage Solution

Author:

Al-Abdallat Yousef,Jumah Inshad,Jumah Rami,Ghanem Hanadi,Telfah Ahmad

Abstract

The present study developed a new system of electrochemical water splitting using a boron doped diamond (BDD) electrode in the electrochemical reactor. The new method assessed the electrical current, acidity (pH), electrical conductivity, absorbance, dissipation, and splitting energies in addition to the water splitting efficiency of the overall process. Employing CuO NPs and ZnO NPs as catalysts induced a significant impact in reducing the dissipated energy and in increasing the efficiency of splitting water. Specifically, CuO NPs showed a significant enhancement in reducing the dissipated energy and in keeping the electrical current of the reaction stable. Meanwhile, the system catalyzed with ZnO NPs induced a similar impact as that for CuO NPs at a lower rate only. The energy dissipation rates in the system were found to be 48% and 65% by using CuO and ZnO NPs, respectively. However, the dissipation rate for the normalized system without catalysis (water buffer at pH = 6.5) is known to be 100%. The energy efficiency of the system was found to be 25% without catalysis, while it was found to be 82% for the system catalyzed with ZnO NPs compared to that for CuO NPs (normalized to 100%). The energy dissipated in the case of the non-catalyzed system was found to be the highest. Overall, water splitting catalyzed with CuO NPs exhibits the best performance under the applied experimental conditions by using the BDD/Niobium (Nb) electrodes.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3