Logical-Information Model of Energy-Saving Production of Organic Sulfur Compounds from Low-Molecular Sulfur Waste Fuel Oil

Author:

Meshalkin ValeryORCID,Shinkar Elena,Berberova NadezhdaORCID,Pivovarova NadezhdaORCID,Ismagilov FoatORCID,Okhlobystin AndreyORCID

Abstract

A logical-informational model of energy resource-efficient chemical technology for the utilization of hydrogen sulfide and low molecular alkanethiols, which are toxic and difficult to remove sulfur components of residual fuel (fuel oil), is proposed. Based on the IDEF1 methodology and existing knowledge about the technological processes of the demercaptanization of various hydrocarbon raw materials (oils, gas condensates), a scheme for the production of organic sulfur compounds from sulfur waste extracted from fuel oil has been modeled. For a sufficiently complete removal of hydrogen sulfide and low molecular weight alkanethiols, energy- and resource-saving stages of the technological process have been developed, which are implemented by ultrasonic and/or magnetic treatment of fuel oil. It is proposed to use the combined action of two alternative methods of processing fuel oil to increase the efficiency of cleaning fuel oil from sulfur components. For the first time, an approach has been developed to utilize unwanted sulfuric impurities contained in fuel oil by involving electric and microwave synthesis in green technological processes, to obtain practically useful organic sulfur compounds with biological activity. It is shown that the use of one-electron oxidant thiols and hydrogen sulfide in organic media leads to the synthesis of organic disulfides and elemental sulfur. Indirect (with the use of mediators) electrosynthesis contributes to the cyclic conduct of the technological process, an increase in efficiency and a decrease in energy consumption compared to the direct (on electrodes) initiation of sulfur components.

Funder

Russian Science Foundation

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3