Experimental Investigation of the Effects of Water and Polymer Flooding on Geometric and Multifractal Characteristics of Pore Structures

Author:

Zhang Xianguo,Lin Chengyan,Wu Yuqi,Zhang Tao,Wang Hongwei,Wang Hanwei,Wu Xiaoxiao,Huang Derong

Abstract

During water and polymer flooding for enhanced oil recovery, pore structures may vary because of the fluid–rock interactions, which can lead to variations in petrophysical properties and affect oil field production. To investigate the effects of fluid flooding on pore structures, six samples were subjected to brine water, dual-system, and alkaline–surfactant–polymer (ASP) polymer displacement experiments. Before and after experiments, samples were scanned by X-ray CT. Thin sections, X-ray diffraction, and high pressure mercury injection tests were also carried out to characterize mineralogy and fractal dimension of pore systems before experiments. Experiment results show that water flooding with low injection pore volume ratio (IPVR) can improve reservoir quality since total porosity and connected porosity of samples rise after the flooding and the proportion of large pores also increases and heterogeneity of pore structure decreases. However, water flooding with high IPVR has reverse effects on pore structures. Polymer flooding reduces the total porosity, connected porosity, the percentage of small pores and enhances the heterogeneity of pore structures. It can be found that pore structures will change in fluid flooding and appropriate water injection can improve reservoir quality while excessive water injection may destroy the reservoir. Meanwhile, injected polymer may block throats and destroy reservoirs. The experimental results can be used as the basis for oil field development.

Funder

National Natural Science Foundation of China

Fundamental Research Funds for the Central Universities

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3