Carbonate Soil Cryogenesis in South Yakutia (Russia)

Author:

Melnikov AndreyORCID,Kut Anna,Zhang ZeORCID,Rochev Viktor

Abstract

The present study investigates changes occurring in the material composition and properties of the South Yakutian carbonate soils during cryogenesis. The nature of the transformations of certain limestone varieties composing the surfaces of rock massifs was determined using scanning electron microscopy, 3D X-ray tomography, as well as lithological–mineralogical and optical–petrographic studies, over a 10-year period. The areas in carbonate rock massifs with increased clay content, pyritisation, dolomitisation, and baritisation, as well as zones of calcite and dolomite junction, were found to be least resistant to the effects of processes associated with water phase transitions, i.e., freezing and thawing. The mineral proportion of limestone on the surface of soil massifs chemically processed over a 10-year period reached 5–7% of the volume of the weathered rocks. In the process of transformation, not only the composition of the rocks changed, but also the nature of the structural bonds that significantly influence their mechanical strength properties. The number of cracks for weathered soil samples increased by 9–16%; their opening increased by 13–18%. For rocks initially having uniaxial compression strength in the range of 33–46 MPa, this strength was reduced by 19–27%. Laboratory experiments on 1000-fold cyclic freezing and thawing of carbonate rock samples (which corresponds to an 8–10-year period of weathering on the surface of a mountain outcrop under the natural conditions of South Yakutia) demonstrate the similarity of these changes with those observed in samples taken from the sides of open pits 10 years ago. In general, soils are influenced by a wide range of environmental factors under natural conditions. The significant influence of alternating temperatures on the changes in the composition and structure of limestones in South Yakutia is characterised in detail.

Funder

Russian Foundation for Basic Research

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Geology,Geotechnical Engineering and Engineering Geology

Reference22 articles.

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3