The Mechanisms Forming the Five–Floor Zonation of Quartz Veins: A Case Study in the Piaotang Tungsten–Tin Deposit, Southern China

Author:

Liu XiangchongORCID,Wang Wenlei,Zhang Dehui

Abstract

It is common among many vein–type tungsten deposits in southern China that the thickness of ore veins increases from <1 cm to >1 m with increasing depth. A five–floor zonation model for the vertical trend of vein morphology was proposed in the 1960s and has been widely applied for predicting ore bodies at deeper levels, but the causative mechanisms for such a zonation remain poorly understood. The Piaotang tungsten–tin deposit, one of the birthplaces of the five–floor zonation model, is chosen as a case study for deciphering the mechanisms forming its morphological zonation of quartz veins. The vertical trend of vein morphology and its link to the W–Sn mineralization in Piaotang was quantified by statistical distributions (Weibull distribution and power law distribution) of vein thickness and ore grade data (WO3 and Sn) from the levels of 676 m to 328 m. Then, the micro–scale growth history of quartz veins was reconstructed by scanning electron microscope–cathodoluminescence (SEM–CL) imaging and in situ trace element analysis. The Weibull modulus α of vein thickness increases with increasing depth, and the fractal dimensions of both vein thickness and ore grade data (WO3 and Sn) decrease with increasing depth. Their vertical changes indicate that the fractures that bear the thick veins were well connected, facilitating fluid focusing and mineralization in mechanically stronger host rocks. Three generations (Q1–Q3) of quartz were identified from CL images, and the CL intensity of quartz is possibly controlled by the concentrations of Al and temperature. From the relative abundance of the Q1–Q3 quartz at different levels, the vertical trend of vein morphology in Piaotang was initially produced during the hydrothermal event represented by Q1 and altered by later hydrothermal events represented by Q2 and Q3. Statistical distributions of vein thickness combined with SEM–CL imaging of quartz could be combined to evaluate the mineralization potential at deeper levels.

Funder

China Geological Survey

Publisher

MDPI AG

Subject

Geology,Geotechnical Engineering and Engineering Geology

Reference102 articles.

1. Geology and metallogeny of tungsten and tin deposits in China;Mao;Rev. Econ. Geol.,2019

2. Petrogenesis of Mesozoic granitoids and volcanic rocks in South China: A response to tectonic evolution

3. Major types and time–space distribution of Mesozoic ore deposits in South China and their geodynamic settings

4. Morphological zonation of tungsten deposits in south China;Gu,1984

5. Vein-type tungsten deposits of China and adjoining regions;Liu;Ore Geol. Rev.,1993

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3