Effects of Agricultural Reclamation on Soil Physicochemical Properties in the Mid-Eastern Coastal Area of China

Author:

Xu Yan,Pu Lijie,Zhang Runsen,Zhu Ming,Zhang Meng,Bu Xinguo,Xie XuefengORCID,Wang Yuan

Abstract

Agricultural reclamation in coastal zones is effective for mitigating population pressure on the food supply. Soil properties are important factors influencing crop production in reclaimed coastal lands. This study aims to investigate the impacts of time and land use trajectories on soil physicochemical properties after reclamation. We sampled soils in areas that were reclaimed in 1999, 1998, 1991, 1989, 1986, 1981, and 1979 and determined some soil physicochemical properties such as electrical conductivity with a 1:5 soil:water ratio (EC1:5), exchange sodium percentage (ESP), sodium adsorption ratio (SAR), pH, organic matter (OM), total nitrogen (TN), alkaline hydrolyzable nitrogen (AN), cation exchange capacity (CEC), total phosphorus (TP), available phosphorus (TP) and soil particle size ratio. We analyzed their correlation with land use and the time since reclamation using one-way analysis of variance (ANOVA) and principal component analysis (PCA). The results showed that soil physicochemical properties changed significantly after agricultural reclamation. Soil EC1:5, ESP, and SAR declined rapidly, and OM, TN, and AN increased rapidly during the 29 years after reclamation. The soil particle size ratio was not significantly correlated with reclamation time. The land-use trajectories identified after reclamation had obvious effects on soil physicochemical properties. Aquaculture ponds were superior to cultivated land in terms of decreasing soil salinity but were inferior in terms of soil nutrient accumulation. In the future, more attention should be given to the environmental effects of agricultural reclaimed soils.

Funder

National Natural Science Foundation of China

Open Foundation of Key Laboratory of Coastal Zone Exploitation and Protection, Ministry of Land and Resource

Publisher

MDPI AG

Subject

Nature and Landscape Conservation,Ecology,Global and Planetary Change

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3