Heterogeneity in La Distribution in Highly La-Doped SrTiO3 Crystals

Author:

Pilch Michał Marek1ORCID,Rodenbücher Christian2,Krok Franciszek3,Szot Kristof14

Affiliation:

1. A. Chełkowski Institute of Physics, University of Silesia in Katowice, 75 Pułku Piechoty 1, 41-500 Chorzów, Poland

2. Forschungszentrum Jülich GmbH, Institute of Energy and Climate Research (IEK-14), 52425 Jülich, Germany

3. Marian Smoluchowski Institute of Physics, Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, Lojasiewicza 11, 30-348 Krakow, Poland

4. aixACCT Systems GmbH, 52068 Aachen, Germany

Abstract

Our paper is focused on the investigation of the dopant distribution in lanthanum-doped strontium titanate (LSTO) single crystals with a 5 wt.% doping level of La. Using X-ray diffraction analysis and pycnometric density measurement, we have found a discrepancy between the theoretical density and the experimentally determined value. The origin of this behavior could be either the creation of the voids in the matrix or the intergrowth of secondary phases with La surplus in the crystal. Transmission electron microscopy (TEM), energy-dispersive X-ray spectroscopy (EDX), and selected area diffraction (SAD) microscopic investigation have confirmed the second hypothesis, namely, that in different regions of LSTO, the local concentration of La shows a substantial variation on the micro- and nanoscopic scale. In order to study the influence of the La dopants on the electronic structure and, therefore, on the electrical conductivity, we have used the local conductivity atomic force microscopy (LCAFM) method as a local electrical probe to map the in-plane electrical conductivity of the La-doped crystal’s surface. The LCAFM conductivity maps reveal heterogeneous conductivity (here in the form of the bands with higher conductivity than the surroundings), related to band-like inhomogeneities of the La distribution. Using LCAFM measurements with atomic resolution obtained between the conducting and nonconducting regions, we analyzed the spreading (spatial expansion) of doping on the undoped or low-doped part of the STO crystal. The found limitation of the doping effect of La on the dielectric part of the STO crystal to 4–5 lattice constants was in good correlation with ab initio studies from the literature.

Funder

Research Excellence Initiative of the University of Silesia in Katowice

Publisher

MDPI AG

Subject

Inorganic Chemistry,Condensed Matter Physics,General Materials Science,General Chemical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3