Flexible Ultraviolet Sensor Based on Zinc Oxide Nanoparticle Powder

Author:

Munguía-Fernández Nicol Alejandra1,Castillo-Saenz Jhonathan Rafael2,Perez-Landeros Oscar Manuel2,Nedev Roumen2,Mateos David2ORCID,Paz Judith2,Suárez Mariel1,Curiel-Alvarez Mario Alberto2ORCID,Nedev Nicola2ORCID,Arias Abraham1ORCID

Affiliation:

1. Facultad de Ingeniería, Universidad Autónoma de Baja California, Blvd. Benito Juárez s/n C.P., Mexicali 21280, Mexico

2. Instituto de Ingeniería, Universidad Autónoma de Baja California, Blvd. Benito Juárez s/n C.P., Mexicali 21280, Mexico

Abstract

Zinc oxide nanopowder was synthesized by the coprecipitation method. FT-IR and EDS analyses were performed to qualitatively determine the composition of the nanopowder. FE-SEM images revealed the morphology of the nanopowder formed by clusters of nanoparticles. An XRD analysis confirmed the wurtzite structure with a crystallite size of ~21.2 nm. UV–Vis measurements were performed to determine the ZnO bandgap (~3.05 eV) using the Tauc plot method in the absorbance spectra. The ZnO nanopowder and two comb-like metal contacts were confined and compacted between two polymeric layers by a low-temperature thermal lamination method, resulting in a flexible Polymer/ZnO/Metal/ZnO/Polymer structure. Part of each comb-like metal was kept uncovered by a polymeric layer in order to be used for electrical characterization. I-V measurements of the flexible structure were performed in the dark and under UV illumination, showing the capacity to detect UV radiation and its potential application as a visible-blind UV sensor. A facile and low-cost flexible optoelectronic device is presented, avoiding using high-vacuum or high-temperature technology. This new and novel approach to developing optoelectronic devices proposes using powder materials as semiconducting active regions instead of thin films; this could eliminate the cracking and delamination problems of flexible devices based on thin film technology.

Publisher

MDPI AG

Subject

Inorganic Chemistry,Condensed Matter Physics,General Materials Science,General Chemical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3