Hybrid Perovskites and 2D Materials in Optoelectronic and Photocatalytic Applications

Author:

Feng Shuo1,Li Benxuan1,Xu Bo1,Wang Zhuo1

Affiliation:

1. International Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology of Ministry of Education, Institute of Microscale Optoelectronics, Shenzhen University, Shenzhen 518060, China

Abstract

Metal halide perovskites, emerging innovative and promising semiconductor materials with notable properties, have been a great success in the optoelectronic and photocatalytic fields. At the same time, two-dimensional (2D) materials, including graphene, transition metal dichalcogenides (TMDCs), black phosphorus (BP) and so on, have attracted significant interest due to their remarkable attributes. While substantial advancements have been made in recent decades, there are still hurdles in enhancing the performance of devices made from perovskites or 2D materials and in addressing their stability for reliable use. Recently, heterostructures combining perovskites with cost-effective 2D materials have exhibited significant advancements in both efficiency and stability, attributed to the unique properties at the heterointerface. In this review, we provide a thorough overview of perovskite and 2D material heterostructures, spanning from synthesis to application. We begin by detailing the diverse fabrication techniques, categorizing them into solid-state and solution-processed methods. Subsequently, we delve into the applications of perovskite and 2D material heterostructures, elaborating on their use in photodetectors, solar cells, and photocatalysis. We conclude by spotlighting existing challenges in developing perovskite and 2D material heterostructures and suggesting potential avenues for further advancements in this research area.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Inorganic Chemistry,Condensed Matter Physics,General Materials Science,General Chemical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3