Affiliation:
1. Institute of Metal Forming, Technische Universität Bergakademie Freiberg, Bernhard-von-Cotta-Straße 4, 09599 Freiberg, Germany
Abstract
Due to a combination of casting and rolling in one process step, twin-roll casting is an effective grain refinement method. This study compares the direct-chill cast (DC) state and the twin-roll cast (TRC) state of an AZ31 magnesium alloy in different steps regarding the microstructure, deformation behavior, and mechanical properties. In the initial state, the TRC AZ31 exhibits a significantly finer grain size and a slight rolling texture compared to the DC AZ31. Therefore, the TRC materials exhibit higher strengths and ductility. After a short heat treatment of 400 °C and 12 h for the DC state and 460 °C and 15 min for the TRC state, cylindric compression tests of the heat-treated samples were conducted at different temperatures (300–400 °C) and strain rates (0.1–10 s−1). To reproduce the deformation behavior at higher strain rates, hot rolling tests (350 °C, 15 s−1) of the heat-treated samples were performed. For both alloys, discontinuous dynamic recrystallization and twinning-induced dynamical recrystallization could be detected. A fine grain size and similar strengths were present after five passes. The AZ31 TRC exhibited a higher ductility due to a higher texture intensity, as the stress direction corresponds to the rolling direction in the case of tensile testing.
Funder
European funds for regional development
European social funds
European Union (European Regional Development Fund) and the Free State of Saxony in the framework
Subject
Inorganic Chemistry,Condensed Matter Physics,General Materials Science,General Chemical Engineering