Magnetic β-Cyclodextrin Polymer Nanoparticles for Efficient Adsorption of U(VI) from Wastewater

Author:

Zhong Xing1,Lv Nan1,Zhang Meicheng1,Tan Yubin1,Yuan Qiaozhulin1,Hu Caixia1,Ma Mingyang1,Wu Yongchuan1,Ouyang Jinbo1

Affiliation:

1. State Key Laboratory of Nuclear Resources and Environment, East China University of Technology, Nanchang 330013, China

Abstract

It is a central issue to eliminate radioactive uranium (U(VI)) efficiently from water. In this manuscript, β-cyclodextrin was cross-linked with 2,3,5,6-tetrafluoro-1,4-benzenedicarbonitrile, and then a carboxylation reaction was used to prepare porous cross-linked polymers rich in carboxyl groups (CA-PCDPs). Subsequently, magnetic nanoparticles (MNPs) were loaded onto the CA-PCDPs via coprecipitation, and magnetic porous β-cyclodextrin polymer nanoparticles (CA-PCDP@MNPs) were successfully obtained, which were used for efficient elimination of U(VI) from nuclear wastewater solution. Moreover, SEM, FTIR, VSM, BET, and XRD were employed to investigate the CA-PCDP@MNP and found that it had a well-developed porous structure, high specific surface area, and abundant oxygen-containing functional groups (carboxyl, hydroxyl, C-O-C, Fe-O, etc.), providing sufficient active sites for chelating uranyl ions. Experiments illustrated that the CA-PCDP@MNP had efficient removal ability for U(VI), and the maximum theoretical adsorption amount for U(VI) reached 245.66 mg/g at pH 6.0 and 303 K. Moreover, the adsorption process was more suitable for the quasi second-order kinetic model and Langmuir adsorption isotherm model, indicating that the adsorption process was chemical adsorption. Meanwhile, the CA-PCDP@MNPs also exhibited fast response magnetic recovery ability and excellent regeneration and recycling ability. In addition, the data of the adsorption mechanism demonstrated that oxygen-containing functional groups, which were rich on the surface of CA-PCDP@MNPs, were the main binding active sites of U(VI). From the above results, it can be deduced that the CA-PCDP@MNP has a good application prospect in the practical application of nuclear wastewater treatment.

Funder

Jiangxi Provincial Natural Science Foundation

College Student Innovation and Enterprise Programme of Jiangxi Province

Publisher

MDPI AG

Subject

Inorganic Chemistry,Condensed Matter Physics,General Materials Science,General Chemical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3