Dynamics–Function Correlation in Photosystem II: Molecular Dynamics in Solution

Author:

Golub Maksym1ORCID,Koppel Miriam2,Pikma Piret2ORCID,Frick Bernhard3ORCID,Pieper Jörg1ORCID

Affiliation:

1. Institute of Physics, University of Tartu, 50411 Tartu, Estonia

2. Institute of Chemistry, University of Tartu, 50411 Tartu, Estonia

3. Institute Laue-Langevin, Avenue des Martyrs 71, CEDEX 9, 38042 Grenoble, France

Abstract

A detailed comprehension of protein function requires information on the spatial structure of the protein, which is often gathered from X-ray crystallography. However, conformational dynamics often also plays an important functional role in proteins and can be directly investigated by complementary quasielastic neutron scattering. A classic example for dynamics–function correlations is Photosystem II, which is a multimeric pigment–protein complex responsible for catalyzing the light-induced photosynthetic water splitting into protons and oxygen. Several functional subprocesses of photosynthetic electron transfer and water splitting are strongly dependent on temperature and hydration, two factors also known to affect protein dynamics. Photosystem II is often investigated in the form of membrane fragments, where the protein complex remains embedded into its native lipid environment. However, experiments on protein function are often carried out in solution state, while direct investigations of molecular dynamics by quasielastic neutron scattering are mainly performed using specifically hydrated membrane fragments only. The present study provides the first quasielastic neutron scattering investigation of the molecular dynamics of Photosystem II membrane fragments (PSIImf) in solution over a wide temperature range from 50 to 300 K. At physiological temperatures above the melting point of water, we observed that the dynamics of PSIImf are significantly activated, leading to larger atomic mean square displacement values compared to those of specifically hydrated membrane stacks. The QENS data can be described by two dynamical components: a fast one, most probably corresponding to methyl group rotation; and a slower one, representing localized conformational dynamics. The latter component could be fitted by a jump-diffusion model at 300 K. The dynamics observed characterize the level of flexibility necessary for the proper PS II functionality under physiological conditions. In contrast, we observe a severe restriction of molecular dynamics upon freezing of the solvent below ~276 K. We associate this unexpected suppression of dynamics with a substantial aggregation of PSIImf caused by ice formation.

Funder

Estonian Research Council

Estonian Ministry of Education and Research

Publisher

MDPI AG

Subject

Inorganic Chemistry,Condensed Matter Physics,General Materials Science,General Chemical Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3