Radiation Damage on Selenomethionine-Substituted Single-Domain Substrate-Binding Protein

Author:

Nam Ki Hyun1ORCID

Affiliation:

1. College of General Education, Kookmin University, Seoul 02707, Republic of Korea

Abstract

Radiation damage is an inherent challenge in macromolecular crystallography (MX). This diminishes the diffraction quality and also compromises the accuracy of the crystal structure. Investigating the impact of radiation damage on the crystal quality and structure can offer valuable insights into the structural interpretation and data collection strategy. Selenomethionine (SeMet, Mse) is an amino acid that exists in nature and contains a high-Z atom, i.e., selenium (Se), which is sensitive to radiation damage; however, little is known regarding the radiation damage of this amino acid. To better understand the radiation damage that affects SeMet, we investigated the radiation damage to a SeMet-substituted substrate-binding protein from Rhodothermus marinus. As the X-ray dose increased, the quality of the data statistics deteriorated. In particular, an increase in the X-ray dose increased the negative Fo-Fc electron density map near the Se atom of the Mse residue, while no negative Fo-Fc electron density map was observed in the other atoms (O, C, and N). Radiation damage increased the absolute B-factor value of the Se atom in the Mse residue, which was higher than that of the other atoms. This indicates that Se is more sensitive to radiation damage than other atoms. These results will contribute to advancing our knowledge of the radiation damage that can occur in MX.

Funder

National Research Foundation of Korea

Korea Initiative for Fostering University of Research and Innovation

ProGen

Publisher

MDPI AG

Subject

Inorganic Chemistry,Condensed Matter Physics,General Materials Science,General Chemical Engineering

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3