Corrosion and Wear-Resistant Composite Zirconium Nitride Layers Produced on the AZ91D Magnesium Alloy in Hybrid Process Using Hydrothermal Treatment

Author:

Tacikowski Michał1,Karpiniak Piotr1,Marciniak Szymon1,Słoma Jacek2,Smolik Jerzy3,Jakieła Rafał4ORCID

Affiliation:

1. Faculty of Materials Science and Engineering, Warsaw University of Technology, ul. Wołoska 141, 02-507 Warsaw, Poland

2. Department of Production Engineering, Institute of Mechanical Engineering, Warsaw University of Life Sciences—SGGW, ul. Nowoursynowska 166, 02-787 Warsaw, Poland

3. Łukasiewicz Research Network—Institute for Sustainable Technologies, ul. Pułaskiego 6/10, 26-600 Radom, Poland

4. Institute of Physics, Polish Academy of Science, Al. Lotników 32/46, 02-668 Warsaw, Poland

Abstract

The aim of the study was to investigate the possibility of an effective improvement in performance properties, including corrosion and wear resistance of magnesium AZ91D alloy using a surface engineering solution based on zirconium nitride composite surface layers produced on AZ91D alloy in a hybrid process using hydrothermal final sealing. Research results show that the formation of a composite ZrN-Zr-Al-type zirconium nitride layer on zirconium and aluminum sublayers results in a significant increase in resistance to corrosion and wear. The decrease in chemical activity of the sealed zirconium nitride composite layer on AZ91D, expressed by the displacement of the corrosion potential in the potentiodynamic test, reaches an outstanding value of ΔEcorr = 865 mV. The results of the SIMS chemical composition analysis of the layers indicate that the sealing of the composite layer occurs at the level of the aluminum sublayer. The composite layer reduces wear in the Amsler roll on block test by more than an order of magnitude. The possibility of effective sealing of zirconium nitride layers on the AZ91D alloy demonstrated in this study, radically increases the corrosion resistance and combined with the simultaneous mechanical durability of the layers, is of key importance from the point of view of new perspectives for application in practice.

Funder

Faculty of Materials Science and Engineering of the Warsaw University of Technology

Publisher

MDPI AG

Subject

Inorganic Chemistry,Condensed Matter Physics,General Materials Science,General Chemical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3