Studies on Optoelectronic and Transport Properties of XSnBr3 (X = Rb/Cs): A DFT Insight

Author:

Behera Debidatta1ORCID,Akila Boumaza2,Mukherjee Sanat Kumar1ORCID,Geleta Tesfaye Abebe34ORCID,Shaker Ahmed5ORCID,Salah Mostafa M.6ORCID

Affiliation:

1. Department of Physics, Birla Institute of Technology, Mesra, Ranchi 835215, India

2. Radiation Physics Laboratory (LPR), Department of Physics, Faculty of Sciences, Badji Mokhtar University, BP 12, Annaba 23000, Algeria

3. Graduate Institute of Applied Science and Technology, National Taiwan University of Science and Technology, Taipei 10607, Taiwan

4. MacDermid Alpha Electronics Solutions Company, Taoyuan 32062, Taiwan

5. Engineering Physics and Mathematics Department, Faculty of Engineering, Ain Shams University, Cairo 11517, Egypt

6. Electrical Engineering Department, Future University in Egypt, Cairo 11835, Egypt

Abstract

Modern manufacturing is aiming for products that are readily available, environmentally sustainable, and energy efficient. This paper delves into the exploration of compounds meeting these criteria. Specifically, we investigate the structural, elastic, optoelectronic, and transport properties of XSnBr3 (X = Rb/Cs) compounds utilizing the full-potential linearized augmented plane wave program (FP LAPW), a component of Wien2K software. Structural optimization is carried out through the generalized gradient approximation (GGA) approach, yielding lattice constants consistent with preceding numerical and experimental studies. The explored XSnBr3 (X = Rb/Cs) materials exhibit ductility and mechanical stability. Notably, XSnBr3 (X = Rb/Cs) displays a direct bandgap, signifying its semiconducting nature. The bandgap values, as determined by the modified Becke–Johnson (mBJ) approach, stand at 2.07 eV for X = Rb and 2.14 eV for XSnBr3 (X = Rb/Cs). Furthermore, utilizing the BoltzTraP software’s transport feature, we investigate thermoelectric properties. Remarkably, XSnBr3 (X = Rb/Cs) demonstrates impressive figures of merit (ZT) at room temperature, implying its potential to serve as a material for highly efficient thermoelectric devices. This research holds promise for contributing to the development of environmentally friendly and energy-efficient technologies.

Publisher

MDPI AG

Subject

Inorganic Chemistry,Condensed Matter Physics,General Materials Science,General Chemical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3