Effects of In and Ga on Spreading Performance of Ag10CuZnSn Brazing Filler Metal and Mechanical Properties of the Brazed Joints

Author:

Zhang Junqian1,Xu Jiachen2,Fu Yucan2ORCID,Xue Songbai3ORCID,Zhang Yuhai1

Affiliation:

1. Jinhua Sanhuan Welding Materials Company Limited, Jinhua 321000, China

2. College of Mechanical & Electrical Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210001, China

3. College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 210001, China

Abstract

Ag-based brazing filler metals are preferred in many industries, but the high price of Ag restricts their wider application. Therefore, developing novel low-Ag brazing filler metals has aroused extensive interest. In this study, the effects of the In and Ga elements on the melting behavior and spreading property of Ag10CuZnSn filler metal and the microstructure and strength of the brazed joints were investigated. The results show that both In and Ga can significantly decrease the solidus and liquidus temperatures of the filler metal. The In element can dissolve into the liquid filler metal and the Ga element can decrease the surface tension of the melted filler metal, which, in turn, improves the spreading area. The In element prefers to dissolve into the Ag-rich phase, and the Ga element prefers to dissolve into the Cu-rich phase; both improve the strength of the filler metal through solid-solution strengthening. The shear strength of the 304 stainless-steel brazed joint reached a peak value of 396 MPa when the Ag10CuZnSn-1.5In-2Ga (wt%) filler metal was used. However, the excessive addition of In and Ga forms brittle intermetallic compounds (IMCs) in the brazing seam, which decreases the strength of the brazed joint.

Publisher

MDPI AG

Subject

Inorganic Chemistry,Condensed Matter Physics,General Materials Science,General Chemical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3