Ag3PO4/Bi2WO6 Heterojunction Photocatalyst with Remarkable Visible-Light-Driven Catalytic Activity

Author:

Wang Li1,Wang Junbo2,Fei Yanfei1,Cheng Heping3,Pan Hua1,Wu Chunfeng2

Affiliation:

1. Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, College of Biology and Environmental Engineering, Zhejiang Shuren University, Hangzhou 310015, China

2. Key Laboratory of Inorganic Functional Materials, School of Chemistry and Chemical Engineering, Huangshan University, Huangshan 245041, China

3. School of Information Engineering, Huangshan University, Huangshan 245041, China

Abstract

Novel Ag3PO4/Bi2WO6 catalysts with enhanced visible-light performance were synthesized using a hydrothermal method and characterized to investigate their morphology, microscopic structure, and binding energies. Photoluminescence spectrum (PL) and electrochemical impedance spectroscopy (EIS) data demonstrate that the formed Ag3PO4/Bi2WO6 heterojunction effectively promotes hole (h+)–electron (e−) separation and transfer efficiency, resulting in the enhancement of photocatalytic activity. Ag3PO4/Bi2WO6 displays higher photocatalytic activity than pure Bi2WO6 or Ag3PO4 alone. Photogenerated holes (h+), ·O2−, and ·OH were found to be the main active species for the degradation of malachite green (MG), methylene blue (MB), and Rhodamine B (RhB). The DFT calculation explains the photostability of Ag3PO4/Bi2WO6 from the perspective of electronic structure. The bandgap of Ag3PO4/Bi2WO6 between the highest occupied molecular orbital (HOMO) and the lowest unoccupied molecular orbital (LUMO) is 1.41 eV, compared with that of Ag3PO4 at 0.91 eV and Bi2WO6 at 2.59 eV. Ag–O–Bi hybridization and the wide HOMO–LUMO bandgap lead to difficulty in electron transfer. As a consequence, Ag+ is difficult to obtain electrons and difficult to convert into Ag0, which makes the catalyst stable.

Funder

the Natural Science Research Key Project of Anhui Provincial Department of Education

Zhejiang Provincial Natural Science Foundation of China

College Students’ Innovative Entrepreneurial Training Project

Special Innovation Foundation of Anhui Province

Publisher

MDPI AG

Subject

Inorganic Chemistry,Condensed Matter Physics,General Materials Science,General Chemical Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3