Research on the Reinforcement and Inhibition of Water–Salt Activity in Mural Ground Layers by Superhydrophobic SiO2 Particles

Author:

Xia Qixing123,Dong Wenqiang123

Affiliation:

1. Institute of Culture and Heritage, Northwestern Polytechnical University, Xi’an 710072, China

2. Key Scientific Research Base of the State Administration of Cultural Heritage for the Conservation and Restoration of Murals and Material Science Research, Northwestern Polytechnical University, Xi’an 710072, China

3. Key Laboratory of Archaeological Exploration and Cultural Heritage Conservation Technology (Northwestern Polytechnical University), Ministry of Education, Xi’an 710129, China

Abstract

Due to notable water–salt activities, salt damage easily recurs and becomes one of the biggest challenges for the protection of ancient murals. Herein, superhydrophobic SiO2 materials with different sizes were used to modify mural ground layer substrates, and the improvement effect mechanisms were systematically evaluated with scanning electron microscopy (SEM), X-ray diffraction (XRD), laser scanning confocal microscopy (LSCM), and a contact angle instrument. The results show that the superhydrophobic SiO2 can spread into the substrates though holes and cracks and further increase the contact angles of the substrates to water droplets. Compared with the initial ground layer substrate, the substrates treated with the superhydrophobic SiO2 possess stronger mechanical strength and a better ability in suppressing water–salt activity. In particular, larger-size SiO2 (mSiO2) maintains better mechanical reinforcement in the substrates, because mSiO2 can provide better support in the internal gaps of the substrates. By contrast, nSiO2 can spread deeper into the substrate than mSiO2, and more greatly improve the contact angle to water droplets, endowing nSiO2 with a better ability to restrain water–salt activity. Our study provides an alternative idea for solving salt damage in murals, and promotes the application of SiO2 materials in heritage conservation.

Funder

Shaanxi Provincial Natural Science Basic Research Program

Shaanxi Provincial Social Science Fund Project

National Natural Science Foundation of China

Fundamental Research Funds for the Central Universities of Northwestern Polytechnical University

Publisher

MDPI AG

Subject

Inorganic Chemistry,Condensed Matter Physics,General Materials Science,General Chemical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3