Side-Chain Labeling Strategy for Forming Self-Sorted Columnar Liquid Crystals from Binary Discotic Systems

Author:

Sakurai Tsuneaki1ORCID,Kato Kenichi2,Shimizu Masaki1

Affiliation:

1. Faculty of Molecular Chemistry and Engineering, Kyoto Institute of Technology, Hashikami-cho, Matsugasaki, Sakyo-ku, Kyoto 606-8585, Japan

2. RIKEN SPring-8 Center, 1-1-1 Kouto, Sayo-cho, Sayo-gun 679-5148, Japan

Abstract

The spontaneous formation of self-sorted columnar structures of electron-donating and accepting π-conjugated molecules is attractive for photoconducting and photovoltaic properties. However, the simple mixing of donor–acceptor discotic molecules usually results in the formation of mixed-stacked or alternating-stacked columns. As a new strategy for overcoming this problem, here, we report the “side-chain labeling” approach using binary discotic systems and realize the preferential formation of such self-sorted columnar structures in a thermodynamically stable phase. The demonstrated key strategy involves the use of hydrophobic and hydrophilic side chains. The prepared blend is composed of liquid crystalline phthalocyanine with branched alkyl chains (H2Pc) and perylenediimide (PDI) carrying alkyl chains at one side and triethyleneglycol (TEG) chains at the other side (PDIC12/TEG). To avoid the thermodynamically unfavorable contact among hydrophobic and hydrophilic chains, PDIC12/TEG self-assembles to stack up on top of each other and H2Pc as well, forming a homo-stacked pair of columns (self-sort). Importantly, H2Pc and PDIC12/TEG in the blend are macroscopically miscible and uniform, and mesoscopically segregated. The columnar liquid crystalline microdomains of H2Pc and PDIC12/TEG are homeotropically aligned in a glass sandwiched cell. The “labeling” strategy demonstrated here is potentially applicable to any binary discotic system and enables the preferential formation of self-sorted columnar structures.

Funder

Japan Society for the Promotion of Science

TEPCO Memorial Foundation

Publisher

MDPI AG

Subject

Inorganic Chemistry,Condensed Matter Physics,General Materials Science,General Chemical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3