Raman Spectroscopic Study of Ruddlesden—Popper Tetragonal Sr2VO4

Author:

Viennois Romain12,Bourgogne David1ORCID,Haines Julien1ORCID

Affiliation:

1. ICGM, Univ Montpellier, CNRS, ENSCM, Montpellier, France

2. Department of Quantum Matter Physics, Ecole de Physique, University Geneva, 24 quai Ernest Ansermet, CH-1211 Geneva, Switzerland

Abstract

The lattice dynamics of tetragonal Sr2VO4 with a Ruddlesden—Popper-layered crystal structure was studied via Raman spectroscopy. We observed three of the four expected Raman-active modes under ambient conditions. Mode Grüneisen parameters and the implicit fractions of two A1g Raman-active modes were determined from high-pressure and high-temperature Raman spectroscopy experiments. The low-energy A1g Raman-active mode involving Sr motions along the c direction has a large isothermal Grüneisen parameter about seven times larger than that of the high-energy A1g Raman-active mode involving apical O motions along the c direction and is, therefore, more anharmonic. The thermodynamic Grüneisen parameter is significantly smaller in Sr2VO4 than in Sr2TiO4 due to the smaller Grüneisen parameter of the high-energy A1g Raman-active mode and other vibrational modes that still need to be identified. The explicit contribution of the low-energy A1g Raman-active mode is negative, and the implicit contribution due to volume change is much larger. Both volume implicit and anharmonic explicit contributions of the high-energy A1g Raman-active mode have similar positive values. The Raman experiment in the air shows that Sr2VO4 begins to decompose above 200 °C.

Publisher

MDPI AG

Subject

Inorganic Chemistry,Condensed Matter Physics,General Materials Science,General Chemical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3