Microstructure, Dielectric Properties and Bond Characteristics of Lithium Aluminosilicate Glass-Ceramics with Various Li/Na Molar Ratio

Author:

Li Minghan12,Kong Lingqi3,Wang Wenzhi12,Ma Yanping12,Jiang Hong12

Affiliation:

1. State Key Laboratory of Marine Resources Utilization in South China Sea & Special Glass Key Lab of Hainan Province, Hainan University, Haikou 570228, China

2. Collaborative Innovation Center of Marine Science and Technology, Hainan University, Haikou 570228, China

3. School of Physics and Optoelectronic Engineering, Hainan University, Haikou 570228, China

Abstract

The advent of 5G technology presented new challenges regarding the high-frequency characteristics of electrical signals and their impact on the cover glass properties of electronic devices. This study aimed to analyze the effect of the Li/Na molar ratio on the dielectric and mechanical properties, as well as the structural characteristics, of lithium aluminosilicate glass-ceramics. Using the melting method, we prepared lithium aluminosilicate base glasses and subsequently crystallized them by adjusting the molar ratio. XRD and TEM analyses were employed to investigate the resultant structures and crystal formation in the five base glasses. It was observed that Li2Si2O5 and LiAlSi4O10 crystals precipitated, exhibiting varying degrees of crystallinity and crystal ratios. Through a comparison of dielectric properties before and after crystallization, it was found that the dielectric constants of the glass-ceramics were consistently reduced. This decrease can be attributed to the lower dielectric constants exhibited by both crystalline phases compared to the parent lithium aluminosilicate glasses. Furthermore, the presence of glass crystals effectively immobilized the alkali metal ions within the glass phase, impeding their movement under an electric field. Consequently, the dielectric loss value of the glass-ceramics decreased with the increasing amount of precipitated crystals. By carefully adjusting the composition and optimizing the crystallization process, we successfully produced lithium aluminosilicate glass-ceramics, demonstrating excellent mechanical and optical properties, coupled with low dielectric properties.

Funder

National Natural Science Foundation of China

Key Scientific & Technological Project of Hainan Province

Construction and preparation of the smallest structural unit of high aluminosilicate glass

Publisher

MDPI AG

Subject

Inorganic Chemistry,Condensed Matter Physics,General Materials Science,General Chemical Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3