Erbium-Doped LiYF4 as a Potential Solid-State Frequency Reference: Eligibility and Spectroscopic Assessment

Author:

Cerrato Erik1,Gionco Chiara1ORCID,Rizzelli Martella Giuseppe23ORCID,Clivati Cecilia1,Gaudino Roberto3,Calonico Davide1

Affiliation:

1. Istituto Nazionale di Ricerca Metrologica (INRiM), Strada delle Cacce 91, 10135 Torino, Italy

2. Fondazione LINKS, Via P. C. Boggio 61, 10138 Torino, Italy

3. Dipartimento di Elettronica e Telecomunicazioni (DET), Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino, Italy

Abstract

Time and frequency metrology is a key enabler for both forefront science and innovation. At the moment, atomic frequency standards (AFSs) are based on atoms either in the vapor phase or trapped in magneto-optical lattices in a vacuum. Finding a solid-state material that contains atoms suitable to be used as a frequency reference would be an important step forward in the simplification of the setup of AFSs. Lanthanide-doped inorganic crystals, such as Er-doped LiYF4, have been studied for several decades, and their intrashell 4f transitions are usually identified as ultra-narrow. Nevertheless, a systematic characterization of these transitions and their linewidths with a correlation to the dopant’s concentration and isotopic purity at low temperatures is lacking. In this work, we studied Er-doped LiYF4 as a potential benchmark material for solid-state frequency references. We chose Er as it has a set of transitions in the telecom band. The influence of Er concentrations and isotope purity on the transition linewidth was systematically studied using high-resolution optical spectroscopy at 5 K. The results indicate that the material under study is an interesting potential candidate as a solid-state frequency reference, having transition linewidths as low as 250 MHz at ~1530 nm.

Funder

Piemonte Region

Fondazione Cassa di Risparmio di Torino

Publisher

MDPI AG

Subject

Inorganic Chemistry,Condensed Matter Physics,General Materials Science,General Chemical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3