Construction of Energetic Complexes Based on LLM-105 and Transition Metal Cations (Ni, Co, Mn, and Cu)

Author:

Xiao Yiyi12,Huang Hui2,Guo Jinkun2,Yan Mi2,Wei Liyuan2,Liu Yu2,Huang Shiliang2,Peng Rufang1,Jin Bo1

Affiliation:

1. State Key Laboratory of Environment-Friendly Energy Materials, Southwest University of Science and Technology, Mianyang 621010, China

2. Institute of Chemical Materials, China Academy of Engineering Physics (CAEP), Mianyang 621900, China

Abstract

Energetic complexes represent a crucial research direction for the design and synthesis of novel energetic materials. In this work, 2,6-diamino-3,5-dinitropyrazine-1-oxide (LLM-105), a significant explosive compound with exceptional comprehensive properties, was selected as the ligand for coordinating with various metal ions. Four novel energetic complexes, Ni(C4H3N6O5)2·DMF (1), Co(C4H3N6O5)2·2DMF (2), Mn(C4H3N6O5)3·3/2DMF (3), and Cu3(C4H2N6O5)3·3DMF (4) were successfully synthesized, and their crystal structures were identified by a single-crystal X-ray diffraction technique. The structural analyses illustrated that LLM-105 can form either a mononuclear metal complex after the deprotonation of one amino group or a trinuclear metal complex after the deprotonation of two amino groups. Compound 1 exhibits a planar quadrilateral geometry, while both compounds 2 and 3 display distorted octahedral configurations. Compound 4 has three metal centers and exhibits two coordination configurations of distorted tetragonal pyramid geometry and planar quadrilateral geometry. The detonation performances of compounds 1–4 were also theoretically calculated, revealing their favorable explosive properties. These findings emphasize the diverse coordination modes of LLM-105 and the structural variability and adjustability of its complexes, offering valuable insights for regulating both the structure and performance of the LLM-105 complex as well as researching its deprotonation.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Inorganic Chemistry,Condensed Matter Physics,General Materials Science,General Chemical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3