Observation of Micro-Scale Domain Structure Evolution under Electric Bias in Relaxor-Based PIN-PMN-PT Single Crystals

Author:

Li Kai1,Zheng Huashan2,Qi Xudong3,Cong Shan1,Zhao Zhenting1,Zhao Junfeng1,Mei Haijuan1,Zhang Duoduo1,Sun Enwei2,Zheng Limei4,Gong Weiping1ORCID,Yang Bin2

Affiliation:

1. Guangdong Provincial Key Laboratory of Electronic Functional Materials and Devices, Huizhou University, Huizhou 516001, China

2. Condensed Matter Science and Technology Institute, School of Instrumentation Science and Engineering, Harbin Institute of Technology, Harbin 150080, China

3. Key Laboratory for Photonic and Electronic Bandgap Materials, Ministry of Education, School of Physics and Electronic Engineering, Harbin Normal University, Harbin 150025, China

4. School of Physics, State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, China

Abstract

Relaxor ferroelectrics play a vital role as functional components in electromechanical devices. The observation of micro-scale domain structure evolution under electric bias in relaxor ferroelectrics has posed challenges due to their complex domain morphology characterized by small-sized domains. The present study aims to investigate the dielectric diffusion–relaxation characteristics, domain structure, and domain switching evolution under electric bias in high-performance single crystals of Pb(In1/2Nb1/2)O3-Pb(Mg1/3Nb2/3)O3-33PbTiO3. The findings reveal the presence of strip-like domain patterns that interlock irregular small-sized nanodomains in PIN-PMN-33PT single crystals. Furthermore, the sample undergoes three distinct stages under electric bias, including the nucleation of new domains, the gradual forward expansion of domains, and the lateral expansion of domains. These observations provide valuable insights for understanding and exploring domain engineering techniques in relaxor ferroelectrics.

Funder

Guangdong Basic and Applied Basic Research Foundation

International Cooperation Project of Guangdong Province

Publisher

MDPI AG

Subject

Inorganic Chemistry,Condensed Matter Physics,General Materials Science,General Chemical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3