Study of Gas Swelling Processes under Irradiation with Protons and He2+ Ions in Li4SiO4–Li2TiO3 Ceramics

Author:

Kenzhina Inesh E.1234,Kozlovskiy Artem L.13ORCID,Chikhray Yevgen125,Kulsartov Timur25,Zaurbekova Zhanna25ORCID,Begentayev Meiram1,Askerbekov Saulet25

Affiliation:

1. Department of General Physics, Satbayev University, Almaty 050032, Kazakhstan

2. Institute of Applied Sciences and Information Technologies, Almaty 050032, Kazakhstan

3. Laboratory of Solid State Physics, The Institute of Nuclear Physics, Almaty 050032, Kazakhstan

4. Advanced Electronics Development Laboratory, Kazakh-British Technical University, 59 Tole bi St., Almaty 050000, Kazakhstan

5. Research Institute of Experimental and Theoretical Physics, Al-Farabi Kazakh National University, Almaty 050032, Kazakhstan

Abstract

One of the important areas of research in the energy sector is the study of the prospects for using new types of nuclear fuel, including tritium, which is one of the most promising types of fuel for thermonuclear energy. At the same time, for the production of tritium in the required quantities, the one that is the most optimal is the use of blanket materials based on lithium-containing ceramics. This is where tritium is released from lithium under the influence of neutron irradiation. The paper presents the results of an investigation of the influence of two-phase ceramics based on Li4SiO4–Li2TiO3 compounds on the resistance to external influences (mechanical loads) during the accumulation of hydrogen and helium (He2+) in the near-surface layer. The interest in such studies is primarily related to the search for solutions in the field of creating high-strength materials for tritium generation for its further use as nuclear fuel for thermonuclear fusion, as well as to the study of the mechanisms of the influence of different phases on the changes in the strength properties of ceramics, which provides an opportunity to expand fundamental knowledge in this area. The proposed method of obtaining two-phase ceramics by mechanical-chemical mixing and subsequent sintering into spherical particles enables the production of well-structured, high-strength ceramics of specified geometric dimensions (limited only by the dimensions of the mold) with a controlled phase ratio. During the experiments, it was found that increasing the content of Li4SiO4 phase in ceramics leads to an increase in strength characteristics (hardness, resistance to cracking) by 15–20% compared to single-phase ceramics. The most optimal composition of two-phase ceramics with high resistance to destructive embrittlement is the ratio of phases 0.75Li4SiO4–0.25Li2TiO3. One of the factors explaining the increase in resistance to destructive embrittlement under high-dose irradiation for two-phase ceramics is the increased dislocation density and the presence of interphase or intergranular boundaries, the high concentration of which leads to the creation of additional obstacles to the agglomeration of hydrogen and helium in the near-surface layer.

Funder

the Science Committee of the Ministry of Science and Higher Education of the Republic of Kazakhstan

Publisher

MDPI AG

Subject

Inorganic Chemistry,Condensed Matter Physics,General Materials Science,General Chemical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3