Prediction of Carbon Dioxide and Methane Adsorption on UiO-66 Metal–Organic Framework via Molecular Simulation

Author:

Maia João M. M.1,Ribeiro Rui P. P. L.1ORCID,Mota José P. B.1

Affiliation:

1. LAQV-REQUIMTE, Department of Chemistry, NOVA School of Science and Technology, NOVA University of Lisbon, 2829-516 Caparica, Portugal

Abstract

The adsorption equilibrium of methane (CH4) and carbon dioxide (CO2) on the metal–organic framework (MOF) UiO-66 is studied via molecular simulation. UiO-66 is a versatile MOF with vast potential for various adsorption processes, such as biogas upgrading, CO2 capture, and natural gas storage. The molecular simulations employ the grand canonical Monte Carlo (GCMC) method, covering a temperature range of 298–343 K and pressures up to 70 bar for CH4 and 30 bar for CO2. The accuracy of different forcefields in describing the adsorption equilibria is evaluated. Two modelling approaches are explored: (i) lumping each hydrogen atom in the MOF framework to the heavy atom it is bonded to (united atom approximation) and (ii) considering explicit hydrogen atoms. Additionally, the influence of electrical charges on CO2 adsorption is also evaluated. The findings indicate that the most effective forcefield to describe the adsorption equilibrium is a united atom forcefield based on the TraPPE parametrization. This approach also yields an accurate calculation of the isosteric heat of adsorption. In the case of CO2, it is observed that the use of electrical charges enhances the prediction of the heat of adsorption, especially in the low-coverage region.

Funder

Fundação para a Ciência e Tecnologia

Publisher

MDPI AG

Subject

Inorganic Chemistry,Condensed Matter Physics,General Materials Science,General Chemical Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3