Photochromism, UV-Vis, Vibrational and Fluorescence Spectroscopy of Differently Colored Hackmanite

Author:

Song Chuchu1,Guo Qingfeng1ORCID,Liu Yang1,Rao Yinghua1,Liao Libing2

Affiliation:

1. School of Gemology, China University of Geosciences, Beijing 100083, China

2. Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes, National Laboratory of Mineral Materials, School of Materials Sciences and Technology, China University of Geosciences, Beijing 100083, China

Abstract

Because of the rich fluorescent color and unique photochromic properties, hackmanite has attracted many mineralogists. In this paper, the basic gemmological characteristics and photochromic and fluorescence mechanisms of four different colors of hackmanite are further investigated through the study of their structural, compositional, and spectroscopic features. The results show the change in the color of hackmanite in photochromism is caused by the joint action of the F-center and the oxygen hole centers. The change in the UV-Vis spectra may be caused by the superposition of two peaks. Under 365 nm UV excitation, the peak of fluorescence spectra of 662 nm is related to the 2∏g→2∏u transition of S2−, the blue emission at 441 nm is caused by the 3P0.1→1S0 transition of s2 ions (Pb2+, Tl+, Sn2+ Sb2+), and at 541 nm is caused by the Mn2+ center. The results are helpful in deepening the understanding of photochromism, fluorescence mechanism, and its structure, expanding the application of hackmanite.

Funder

National Science and Technology Infrastructure-The National Infrastructure of Mineral, Rock and Fossil Resources for Science and Technology

Program of the Data Integration and Standardization in the Geological Science and Technology from MOST, China

College Student Research Innovation Program of China University of Geosciences, Beijing

Publisher

MDPI AG

Subject

Inorganic Chemistry,Condensed Matter Physics,General Materials Science,General Chemical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3