Vibrational Properties of the Potassium Titanyl Phosphate Crystal Family

Author:

Neufeld Sergej1ORCID,Gerstmann Uwe1ORCID,Padberg Laura1,Eigner Christof2ORCID,Berth Gerhard1,Silberhorn Christine12ORCID,Eng Lukas M.34ORCID,Schmidt Wolf Gero1ORCID,Ruesing Michael3ORCID

Affiliation:

1. Department of Physics, Paderborn University, Warburger Straße 100, 33098 Paderborn, Germany

2. Institute for Photonic Quantum Systems (PhoQS), University of Paderborn, 33098 Paderborn, Germany

3. Institute of Applied Physics, Dresden University of Technology, Nöthnitzer Straße 61, 01187 Dresden, Germany

4. ct.qmat, Dresden-Würzburg Cluster of Excellence-EXC 2147, Dresden University of Technology, 01062 Dresden, Germany

Abstract

The crystal family of potassium titanyl phosphate (KTiOPO4) is a promising material group for applications in quantum and nonlinear optics. The fabrication of low-loss optical waveguides, as well as high-grade periodically poled ferroelectric domain structures, requires a profound understanding of the material properties and crystal structure. In this regard, Raman spectroscopy offers the possibility to study and visualize domain structures, strain, defects, and the local stoichiometry, which are all factors impacting device performance. However, the accurate interpretation of Raman spectra and their changes with respect to extrinsic and intrinsic defects requires a thorough assignment of the Raman modes to their respective crystal features, which to date is only partly conducted based on phenomenological modelling. To address this issue, we calculated the phonon spectra of potassium titanyl phosphate and the related compounds rubidium titanyl phosphate (RbTiOPO4) and potassium titanyl arsenate (KTiOAsO4) based on density functional theory and compared them with experimental data. Overall, this allows us to assign various spectral features to eigenmodes of lattice substructures with improved detail compared to previous assignments. Nevertheless, the analysis also shows that not all features of the spectra can unambigiously be explained yet. A possible explanation might be that defects or long range fields not included in the modeling play a crucial rule for the resulting Raman spectrum. In conclusion, this work provides an improved foundation into the vibrational properties in the KTiOPO4 material family.

Funder

Deutsche Forschungsgemeinschaft

Publisher

MDPI AG

Subject

Inorganic Chemistry,Condensed Matter Physics,General Materials Science,General Chemical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3