Improved Feature Extraction and Similarity Algorithm for Video Object Detection

Author:

You Haotian1,Lu Yufang1,Tang Haihua1

Affiliation:

1. School of Information Science and Engineering, Guilin University of Technology, Guilin 541004, China

Abstract

Video object detection is an important research direction of computer vision. The task of video object detection is to detect and classify moving objects in a sequence of images. Based on the static image object detector, most of the existing video object detection methods use the unique temporal correlation of video to solve the problem of missed detection and false detection caused by moving object occlusion and blur. Another video object detection model guided by an optical flow network is widely used. Feature aggregation of adjacent frames is performed by estimating the optical flow field. However, there are many redundant computations for feature aggregation of adjacent frames. To begin with, this paper improved Faster RCNN by Feature Pyramid and Dynamic Region Aware Convolution. Then the S-SELSA module is proposed from the perspective of semantic and feature similarity. Feature similarity is obtained by a modified SSIM algorithm. The module can aggregate the features of frames globally to avoid redundancy. Finally, the experimental results on the ImageNet VID and DET datasets show that the mAP of the method proposed in this paper is 83.55%, which is higher than the existing methods.

Funder

Guangxi Key Laboratory of Embedded Technology and Intelligent System,Guilin University of Technolog

Publisher

MDPI AG

Subject

Information Systems

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3