Affiliation:
1. School of Computer and Communication, Lanzhou University of Technology, Lanzhou 730050, China
Abstract
Pedestrian detection represents one of the critical tasks of computer vision; however, detecting pedestrians can be compromised by problems such as the various scale of pedestrian features and cluttered background, which can easily cause a loss of accuracy. Therefore, we propose a pedestrian detection method based on the FCOS network. Firstly, we designed a feature enhancement module to ensure that effective high-level semantics are obtained while preserving the detailed features of pedestrians. Secondly, we defined a key-center region judgment to reduce the interference of background information on pedestrian feature extraction. By testing on the Caltech pedestrian dataset, the AP value is improved from 87.36% to 94.16%. The results of the comparison experiment illustrate that the model proposed in this paper can significantly increase the accuracy.
Funder
National Natural Science Foundation of China
Reference24 articles.
1. Crowd anomaly detection and localization using histogram of magnitude and momentum;Bansod;Vis. Comput.,2020
2. Gray, D., and Tao, H. (2008, January 12–18). Viewpoint invariant pedestrian recognition with an ensemble of localized features. Proceedings of the 10th European Conference on Computer Vision, Marseille, France.
3. Dalal, N., and Triggs, B. (2005, January 20–25). Histograms of oriented gradients for human detection. Proceedings of the 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, San Diego, CA, USA.
4. Felzenszwalb, P., McAllester, D., and Ramanan, D. (2008, January 23–28). A discriminatively trained, multiscale, deformable part model. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Anchorage, AK, USA.
5. Girshick, R., Donahue, J., Darrell, T., and Malik, J. (2014, January 23–28). Rich feature hierarchies for accurate object detection and semantic segmentation. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Columbus, OH, USA.
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献