Abstract
In industrial applications, bolt connections are simple and economical, contributing to their popularity for use in wood packing boxes. However, they can easily fail when subjected to a continuous vibrational load under usual working conditions such as transportation and hoisting. Based on an ultrasonic technique, nondestructive evaluation can be used to quickly detect large-scale structures, but the complex propagation properties in wood limit its application. To solve this problem, a time-reversal method was adopted to predict the residual preload on bolted connections by focusing on the signals collected by wood structures, which helps to assess the structures’ reliability. In this study, the residual preload of bolted connections in wood structures was predicted using the deep-learning method, LSTM, one-dimensional Resnet and Densenet, and tree classification models. It was confirmed that the use of the time-reversal method for ultrasonic detection focused on the signals transmitted in bolted connections of wood structures and deep-learning methods are a feasible way to predict an ultrasonic transmission model.
Funder
Jiangsu Provincial Key Research and Development Program
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献