On the Utility of High-Resolution Soil Moisture Data for Better Constraining Thermal-Based Energy Balance over Three Semi-Arid Agricultural Areas

Author:

Ait Hssaine Bouchra,Chehbouni Abdelghani,Er-Raki SalahORCID,Khabba Said,Ezzahar JamalORCID,Ouaadi NadiaORCID,Ojha Nitu,Rivalland VincentORCID,Merlin Olivier

Abstract

Over semi-arid agricultural areas, the surface energy balance and its components are largely dependent on the soil water availability. In such conditions, the land surface temperature (LST) retrieved from the thermal bands has been commonly used to represent the high spatial variability of the surface evaporative fraction and associated fluxes. In contrast, however, the soil moisture (SM) retrieved from microwave data has rarely been used thus far due to the unavailability of high-resolution (field scale) SM products until recent times. Soil evaporation is controlled by the surface SM. Moreover, the surface SM dynamics is temporally related to root zone SM, which provides information about the water status of plants. The aim of this work was to assess the gain in terms of flux estimates when integrating microwave-derived SM data in a thermal-based energy balance model at the field scale. In this study, SM products were derived from three different methodologies: the first approach inverts SM, labeled hereafter as ‘SMO20’, from the backscattering coefficient and the interferometric coherence derived from Sentinel-1 products in the water cloud model (WCM); the second approach inverts SM from Sentinel-1 and Sentinel-2 data based on machine learning algorithms trained on a synthetic dataset simulated by the WCM noted ‘SME16’; and the third approach disaggregates the soil moisture active and passive SM at 100 m resolution using Landsat optical/thermal data ‘SMO19’. These SM products, combined with the Landsat based vegetation index and LST, are integrated simultaneously within an energy balance model (TSEB-SM) to predict the latent (LE) and sensible (H) heat fluxes over two irrigated and rainfed wheat crop sites located in the Haouz Plain in the center of Morocco. H and LE were measured over each site using an eddy covariance system and their values were used to evaluate the potential of TSEB-SM against the classical two source energy balance (TSEB) model solely based on optical/thermal data. Globally, TSEB systematically overestimates LE (mean bias of 100 W/m2) and underestimates H (mean bias of −110 W/m2), while TSEB-SM significantly reduces those biases, regardless of the SM product used as input. This is linked to the parameterization of the Priestley Taylor coefficient, which is set to αPT = 1.26 by default in TSEB and adjusted across the season in TSEB-SM. The best performance of TSEB-SM was obtained over the irrigated field using the three retrieved SM products with a mean R2 of 0.72 and 0.92, and a mean RMSE of 31 and 36 W/m2 for LE and H, respectively. This opens up perspectives for applying the TSEB-SM model over extended irrigated agricultural areas to better predict the crop water needs at the field scale.

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3