Anomaly Detection in Airborne Fourier Transform Thermal Infrared Spectrometer Images Based on Emissivity and a Segmented Low-Rank Prior

Author:

Zhu Xuhe,Cao LiqinORCID,Wang Shaoyu,Gao Lyuzhou,Zhong YanfeiORCID

Abstract

Although hyperspectral anomaly detection is commonly conducted in the visible, near-infrared, and shortwave infrared spectral regions, there has been less research on hyperspectral anomaly detection in the longwave infrared (LWIR) hyperspectral region. The radiance of thermal infrared hyperspectral imagery is determined by the temperature and emissivity. To avoid the detection uncertainty caused by the single factor of temperature, emissivity can be introduced to detect anomalies. However, in the emissivity domain, the spectral contrast and signal-to-noise ratio (SNR) are low, which makes it difficult to separate the anomalies from the background. In this paper, an anomaly detection method combining emissivity and a segmented low-rank prior (EaSLRP) is proposed for use with thermal infrared hyperspectral imagery. The EaSLRP method is divided into three parts—1) temperature/emissivity retrieval, 2) extraction of the thermal infrared hyperspectral background information, and 3) Mahalanobis distance detection. A homogeneous region generation method is also proposed to solve the problem of the complex global background leading to inaccurate background estimation. The GoDec method is used for matrix decomposition and background information extraction and to remove some of the noise. The proposed Mahalanobis distance detector then uses the background component and original image for anomaly detection, while highlighting the spectral difference between the anomalies and background. This method can also suppress the influence of noise, to some extent. The experimental results obtained with airborne Fourier transform thermal infrared spectrometer hyperspectral images demonstrate that the EaSLRP method is effective when compared with the Reed–Xiaoli detector (RXD), the segmented RX detector (SegRX), the low-rank and sparse representation-based detector (LRASR), the low-rank and sparse matrix decomposition (LRaSMD)-based Mahalanobis distance method (LSMAD), and the locally enhanced low-rank prior method (LELRP-AD).

Funder

National Key Research and Development Program of China

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Reference30 articles.

1. Hyperspectral Data Exploitation: Theory and Applications;Chang,2007

2. Hyperspectral Imaging Remote Sensing: Physics, Sensors, and Algorithms;Manolakis,2016

3. Imaging Spectrometry for Earth Remote Sensing

4. Detection Algorithms in Hyperspectral Imaging Systems: An Overview of Practical Algorithms

5. Hyperspectral Remote Sensing;Eismann,2012

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3