A New Coupled Elimination Method of Soil Moisture and Particle Size Interferences on Predicting Soil Total Nitrogen Concentration through Discrete NIR Spectral Band Data

Author:

Zhou PengORCID,Yang Wei,Li Minzan,Wang Weichao

Abstract

Rapid and accurate measurement of high-resolution soil total nitrogen (TN) information can promote variable rate fertilization, protect the environment, and ensure crop yields. Many scholars focus on exploring the rapid TN detection methods and corresponding soil sensors based on spectral technology. However, soil spectra are easily disturbed by many factors, especially soil moisture and particle size. Real-time elimination of the interferences of these factors is necessary to improve the accuracy and efficiency of measuring TN concentration in farmlands. Although, many methods can be used to eliminate soil moisture and particle size effects on the estimation of soil parameters using continuum spectra. However, the discrete NIR spectral band data can be completely different in the band attribution with continuum spectra, that is, it does not have continuity in the sense of spectra. Thus, relevant elimination methods of soil moisture and particle size effects on continuum spectra do not apply to the discrete NIR spectral band data. To solve this problem, in this study, moisture absorption correction index (MACI) and particle size correction index (PSCI) methods were proposed to eliminate the interferences of soil moisture and particle size, respectively. Soil moisture interference was decreased by normalizing the original spectral band data into standard spectral band data, on the basis of the strong soil moisture absorption band at 1450 nm. For the PSCI method, characteristic bands of soil particle size were identified to be 1361 and 1870 nm firstly. Next, normalized index Np, which calculated wavelengths of 1631 and 1870 nm, was proposed to eliminate soil particle size interference on discrete NIR spectral band data. Finally, a new coupled elimination method of soil moisture and particle size interferences on predicting TN concentration through discrete NIR spectral band data was proposed and evaluated. The six discrete spectral bands (1070, 1130, 1245, 1375, 1550, and 1680 nm) used in the on-the-go detector of TN concentration were selected to verify the new method. Field tests showed that the new coupled method had good effects on eliminating interferences of soil moisture and soil particle size.

Funder

National Key Research Projects

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3