Improving the Capability of the SCOPE Model for Simulating Solar-Induced Fluorescence and Gross Primary Production Using Data from OCO-2 and Flux Towers

Author:

Wang HaiboORCID,Xiao JingfengORCID

Abstract

Solar-induced chlorophyll fluorescence (SIF) measured from space has shed light on the diagnosis of gross primary production (GPP) and has emerged as a promising way to quantify plant photosynthesis. The SCOPE model can explicitly simulate SIF and GPP, while the uncertainty in key model parameters can lead to significant uncertainty in simulations. Previous work has constrained uncertain parameters in the SCOPE model using coarse-resolution SIF observations from satellites, while few studies have used finer resolution SIF measured from the Orbiting Carbon Observatory-2 (OCO-2) to improve the model. Here, we identified the sensitive parameters to SIF and GPP estimation, and improved the performance of SCOPE in simulating SIF and GPP for temperate forests by constraining the physiological parameters relating to SIF and GPP by combining satellite-based SIF measurements (e.g., OCO-2) with flux tower GPP data. Our study showed that SIF had weak capability in constraining maximum carboxylation capacity (Vcmax), while GPP could constrain this parameter well. The OCO-2 SIF data constrained fluorescence quantum efficiency (fqe) well and improved the performance of SCOPE in SIF simulation. However, the use of the OCO-2 SIF alone cannot significantly improve the GPP simulation. The use of both satellite SIF and flux tower GPP data as constraints improved the performance of the model for simulating SIF and GPP simultaneously. This analysis is useful for improving the capability of the SCOPE model, understanding the relationships between GPP and SIF, and improving the estimation of both SIIF and GPP by incorporating satellite SIF products and flux tower data.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3