Potential of Sentinel-1 C-Band Time Series to Derive Structural Parameters of Temperate Deciduous Forests

Author:

Bruggisser MoritzORCID,Dorigo WouterORCID,Dostálová AlenaORCID,Hollaus MarkusORCID,Navacchi ClaudioORCID,Schlaffer StefanORCID,Pfeifer NorbertORCID

Abstract

With the increasing occurrence of forest fires in the mid-latitudes and the alpine region, fire risk assessments become important in these regions. Fuel assessments involve the collection of information on forest structure as, e.g., the stand height or the stand density. The potential of airborne laser scanning (ALS) to provide accurate forest structure information has been demonstrated in several studies. Yet, flight acquisitions at the state level are carried out in intervals of typically five to ten years in Central Europe, which often makes the information outdated. The Sentinel-1 (S-1) synthetic aperture radar mission provides freely accessible earth observation (EO) data with short revisit times of 6 days. Forest structure information derived from this data source could, therefore, be used to update the respective ALS descriptors. In our study, we investigated the potential of S-1 time series to derive stand height and fractional cover, which is a measure of the stand density, over a temperate deciduous forest in Austria. A random forest (RF) model was used for this task, which was trained using ALS-derived forest structure parameters from 2018. The comparison of the estimated mean stand height from S-1 time series with the ALS derived stand height shows a root mean square error (RMSE) of 4.76 m and a bias of 0.09 m on a 100 m cell size, while fractional cover can be retrieved with an RMSE of 0.08 and a bias of 0.0. However, the predictions reveal a tendency to underestimate stand height and fractional cover for high-growing stands and dense areas, respectively. The stratified selection of the training set, which we investigated in order to achieve a more homogeneous distribution of the metrics for training, mitigates the underestimation tendency to some degree, yet, cannot fully eliminate it. We subsequently applied the trained model to S-1 time series of 2017 and 2019, respectively. The computed difference between the predictions suggests that large decreases in the forest height structure in this two-year interval become apparent from our RF-model, while inter-annual forest growth cannot be measured. The spatial patterns of the predicted forest height, however, are similar for both years (Pearson’s R = 0.89). Therefore, we consider that S-1 time series in combination with machine learning techniques can be applied for the derivation of forest structure information in an operational way.

Funder

Österreichische Forschungsförderungsgesellschaft

Technische Universität Wien Bibliothek

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Cited by 19 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Advancements in mapping areas suitable for wetland habitats across the conterminous United States;Science of The Total Environment;2024-11

2. Forest Height Estimation using Machine Learning Regressors with SAR Data;2024 8th International Young Engineers Forum on Electrical and Computer Engineering (YEF-ECE);2024-07-05

3. Evaluating Sentinel-1 Capability in Classifying Dieback in Chestnut and Oak Forests;IEEE Geoscience and Remote Sensing Letters;2024

4. Mapping Forest Height with Multifrequency SAR, InSAR, and Multispectral Datasets;IFIP Advances in Information and Communication Technology;2024

5. High-resolution mapping of forest structure from integrated SAR and optical images using an enhanced U-net method;Science of Remote Sensing;2023-12

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3