Autonomous Repeat Image Feature Tracking (autoRIFT) and Its Application for Tracking Ice Displacement

Author:

Lei YangORCID,Gardner AlexORCID,Agram Piyush

Abstract

In this paper, we build on past efforts with regard to the implementation of an efficient feature tracking algorithm for the mass processing of satellite images. This generic open-source feature tracking routine can be applied to any type of imagery to measure sub-pixel displacements between images. The routine consists of a feature tracking module (autoRIFT) that enhances computational efficiency and a geocoding module (Geogrid) that mitigates problems found in existing geocoding algorithms. When applied to satellite imagery, autoRIFT can run on a grid in the native image coordinates (such as radar or map) and, when used in conjunction with the Geogrid module, on a user-defined grid in geographic Cartesian coordinates such as Universal Transverse Mercator or Polar Stereographic. To validate the efficiency and accuracy of this approach, we demonstrate its use for tracking ice motion by using ESA’s Sentinel-1A/B radar data (seven pairs) and NASA’s Landsat-8 optical data (seven pairs) collected over Greenland’s Jakobshavn Isbræ glacier in 2017. Feature-tracked velocity errors are characterized over stable surfaces, where the best Sentinel-1A/B pair with a 6 day separation has errors in X/Y of 12 m/year or 39 m/year, compared to 22 m/year or 31 m/year for Landsat-8 with a 16-day separation. Different error sources for radar and optical image pairs are investigated, where the seasonal variation and the error dependence on the temporal baseline are analyzed. Estimated velocities were compared with reference velocities derived from DLR’s TanDEM-X SAR/InSAR data over the fast-moving glacier outlet, where Sentinel-1 results agree within 4% compared to 3–7% for Landsat-8. A comprehensive apples-to-apples comparison is made with regard to runtime and accuracy between multiple implementations of the proposed routine and the widely-used “dense ampcor" program from NASA/JPL’s ISCE software. autoRIFT is shown to provide two orders of magnitude of runtime improvement with a 20% improvement in accuracy.

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3