Quantifying Forest Fire and Post-Fire Vegetation Recovery in the Daxin’anling Area of Northeastern China Using Landsat Time-Series Data and Machine Learning

Author:

Qiu Jie,Wang Heng,Shen WenjuanORCID,Zhang Yali,Su Huiyi,Li MingshiORCID

Abstract

Many post-fire on-site factors, including fire severity, management strategies, topography, and local climate, are concerns for forest managers and recovery ecologists to formulate forest vegetation recovery plans in response to climate change. We used the Vegetation Change Tracker (VCT) algorithm to map forest disturbance in the Daxing’anling area, Northeastern China, from 1987 to 2016. A support vector machine (SVM) classifier and historical fire records were used to separate burned patches from disturbance patches obtained from VCT. Afterward, stepwise multiple linear regression (SMLR), SVM, and random forest (RF) were applied to assess the statistical relationships between vegetation recovery characteristics and various influential factors. The results indicated that the forest disturbance events obtained from VCT had high spatial accuracy, ranging from 70% to 86% for most years. The overall accuracy of the annual fire patches extracted from the proposed VCT-SVM algorithm was over 92%. The modeling accuracy of post-fire vegetation recovery was excellent, and the validation results confirmed that the RF algorithm provided better prediction accuracy than SVM and SMLR. In conclusion, topographic variables (e.g., elevation) and meteorological variables (e.g., the post-fire annual precipitation in the second year, the post-fire average relative humidity in the fifth year, and the post-fire extreme maximum temperature in the third year) jointly affect vegetation recovery in this cold temperate continental monsoon climate region.

Funder

National Natural Science Foundation of China

China Postdoctoral Science Foundation

Priority Academic Program Development of Jiangsu Higher Education Institutions

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3