A Novel Robotic Controller Using Neural Engineering Framework-Based Spiking Neural Networks

Author:

Marrero Dailin1ORCID,Kern John1ORCID,Urrea Claudio1ORCID

Affiliation:

1. Electrical Engineering Department, Faculty of Engineering, University of Santiago of Chile (USACH), Av. Víctor Jara 3519, Estación Central, Santiago 9170124, Chile

Abstract

This paper investigates spiking neural networks (SNN) for novel robotic controllers with the aim of improving accuracy in trajectory tracking. By emulating the operation of the human brain through the incorporation of temporal coding mechanisms, SNN offer greater adaptability and efficiency in information processing, providing significant advantages in the representation of temporal information in robotic arm control compared to conventional neural networks. Exploring specific implementations of SNN in robot control, this study analyzes neuron models and learning mechanisms inherent to SNN. Based on the principles of the Neural Engineering Framework (NEF), a novel spiking PID controller is designed and simulated for a 3-DoF robotic arm using Nengo and MATLAB R2022b. The controller demonstrated good accuracy and efficiency in following designated trajectories, showing minimal deviations, overshoots, or oscillations. A thorough quantitative assessment, utilizing performance metrics like root mean square error (RMSE) and the integral of the absolute value of the time-weighted error (ITAE), provides additional validation for the efficacy of the SNN-based controller. Competitive performance was observed, surpassing a fuzzy controller by 5% in terms of the ITAE index and a conventional PID controller by 6% in the ITAE index and 30% in RMSE performance. This work highlights the utility of NEF and SNN in developing effective robotic controllers, laying the groundwork for future research focused on SNN adaptability in dynamic environments and advanced robotic applications.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3