SAFE-MAC: Speed Aware Fairness Enabled MAC Protocol for Vehicular Ad-hoc Networks

Author:

Siddik Md.,Moni Shafika,Alam MohammadORCID,Johnson WilliamORCID

Abstract

Highly dynamic geographical topology, two-direction mobility, and varying traffic density can lead to fairness issues in Vehicular Ad-hoc Networks (VANETs). The Medium Access Control (MAC) protocol plays a vital role in sharing the common wireless channel efficiently between vehicles in a VANET system. However, ensuring fairness between vehicles can be a challenge in designing MAC protocols for VANET systems. The existing protocol, IEEE 802.11 DCF, ensures that the packet transmission rate for a particular vehicle is directly proportional to the amount of time a vehicle spends within a service area, but it does not guarantee that faster vehicles will be able to send the minimum number of packets. Other existing MAC protocols based on IEEE 802.11 are able to provide a minimum amount of data transmission regardless of velocity, but are unable to provide an amount of data transmission that is more proportionate to the time a vehicle spends in the service area. To address the above limitations, we propose a Speed Aware Fairness Enabled MAC (SAFE-MAC) protocol that calculates the residence time of a vehicle in a service area by using mobility metrics such as position, direction, and speed to synthesize the transmission probability of each individual vehicle with respect to its residence time. This is achieved by dynamically altering the values of parameters such as minimum contention window, maximum backoff stage, and retransmission limit in the MAC protocol. We then develop an analytical model to compare the performance of our proposed protocol with contemporary MAC protocols. Numerical analysis results show that our proposed protocol significantly improves fairness among the speed-varying vehicles in VANET.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3