Wearable Sensors as a Preoperative Assessment Tool: A Review

Author:

Syversen Aron1ORCID,Dosis Alexios2ORCID,Jayne David2,Zhang Zhiqiang3ORCID

Affiliation:

1. School of Computing, University of Leeds, Leeds LS2 9JT, UK

2. School of Medicine, University of Leeds, Leeds LS2 9JT, UK

3. School of Electrical Engineering, University of Leeds, Leeds LS2 9JT, UK

Abstract

Surgery is a common first-line treatment for many types of disease, including cancer. Mortality rates after general elective surgery have seen significant decreases whilst postoperative complications remain a frequent occurrence. Preoperative assessment tools are used to support patient risk stratification but do not always provide a precise and accessible assessment. Wearable sensors (WS) provide an accessible alternative that offers continuous monitoring in a non-clinical setting. They have shown consistent uptake across the perioperative period but there has been no review of WS as a preoperative assessment tool. This paper reviews the developments in WS research that have application to the preoperative period. Accelerometers were consistently employed as sensors in research and were frequently combined with photoplethysmography or electrocardiography sensors. Pre-processing methods were discussed and missing data was a common theme; this was dealt with in several ways, commonly by employing an extraction threshold or using imputation techniques. Research rarely processed raw data; commercial devices that employ internal proprietary algorithms with pre-calculated heart rate and step count were most commonly employed limiting further feature extraction. A range of machine learning models were used to predict outcomes including support vector machines, random forests and regression models. No individual model clearly outperformed others. Deep learning proved successful for predicting exercise testing outcomes but only within large sample-size studies. This review outlines the challenges of WS and provides recommendations for future research to develop WS as a viable preoperative assessment tool.

Funder

EPSRC

Publisher

MDPI AG

Reference184 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3