Abstract
The decomposition of the energy of a compressible fluid parcel into slow (deterministic) and fast (stochastic) components is interpreted as a stochastic Hamiltonian interacting particle system (HIPS). It is shown that the McKean–Vlasov equation associated to the mean field limit yields the barotropic Navier–Stokes equation with density-dependent viscosity. Capillary forces can also be treated by this approach. Due to the Hamiltonian structure, the mean field system satisfies a Kelvin circulation theorem along stochastic Lagrangian paths.
Subject
Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry
Reference53 articles.
1. On the Barotropic Compressible Navier–Stokes Equations
2. DIFFUSE-INTERFACE METHODS IN FLUID MECHANICS
3. Sur la forme que prennent les équations du mouvements des fluides si l’on tient compte des forces capillaires causées par des variations de densité considèrables mais continues et sur la théorie de la capillarité dans l’hypothèse d’une variation continue de la densité;Korteweg;Arch. Neerl. Sci. Exactes Nat. Ser. II,1901
4. On Some Compressible Fluid Models: Korteweg, Lubrication, and Shallow Water Systems
5. Effective velocity in compressible Navier–Stokes equations with third-order derivatives
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献