Prognostic Impact of Metabolic Syndrome and Steatotic Liver Disease in Hepatocellular Carcinoma Using Machine Learning Techniques

Author:

Gil-Rojas Sergio123ORCID,Suárez Miguel123ORCID,Martínez-Blanco Pablo123ORCID,Torres Ana M.23,Martínez-García Natalia4ORCID,Blasco Pilar5,Torralba Miguel467ORCID,Mateo Jorge23

Affiliation:

1. Gastroenterology Department, Virgen de la Luz Hospital, 16002 Cuenca, Spain

2. Medical Analysis Expert Group, Instituto de Investigación Sanitaria de Castilla-La Mancha (IDISCAM), 45071 Toledo, Spain

3. Medical Analysis Expert Group, Institute of Technology, Universidad de Castilla-La Mancha, 16071 Cuenca, Spain

4. Internal Medicine Unit, University Hospital of Guadalajara, 19002 Guadalajara, Spain

5. Department of Pharmacy, General University Hospital, 46014 Valencia, Spain

6. Faculty of Medicine, Universidad de Alcalá de Henares, 28801 Alcalá de Henares, Spain

7. Translational Research Group in Cellular Immunology (GITIC), Instituto de Investigación Sanitaria de Castilla-La Mancha (IDISCAM), 45071 Toledo, Spain

Abstract

Metabolic dysfunction-associated steatotic liver disease (MASLD) currently represents the predominant cause of chronic liver disease and is closely linked to a significant increase in the risk of hepatocellular carcinoma (HCC), even in the absence of liver cirrhosis. In this retrospective multicenter study, machine learning (ML) methods were employed to investigate the relationship between metabolic profile and prognosis at diagnosis in a total of 219 HCC patients. The eXtreme Gradient Boosting (XGB) method demonstrated superiority in identifying mortality predictors in our patients. Etiology was the most determining prognostic factor followed by Barcelona Clinic Liver Cancer (BCLC) and Eastern Cooperative Oncology Group (ECOG) classifications. Variables related to the development of hepatic steatosis and metabolic syndrome, such as elevated levels of alkaline phosphatase (ALP), uric acid, obesity, alcohol consumption, and high blood pressure (HBP), had a significant impact on mortality prediction. This study underscores the importance of metabolic syndrome as a determining factor in the progression of HCC secondary to MASLD. The use of ML techniques provides an effective tool to improve risk stratification and individualized therapeutic management in these patients.

Funder

Fundación Investigación Hospital General Universitario de Valencia

University of Castilla-La Mancha

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3