Affiliation:
1. Cancer Control Research, BC Cancer Research Institute, Vancouver, BC V5Z 1L3, Canada
2. School of Population and Public Health, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
Abstract
While hundreds of germline genetic variants have been associated with breast cancer risk, the mechanisms underlying the impacts of most of these variants on breast cancer remain uncertain. Metabolomics may offer valuable insights into the mechanisms underlying genetic risks of breast cancer. Among 143 cancer-free female participants, we used linear regression analyses to explore associations between the genetic risk of breast cancer, as determined by a previously developed polygenic risk score (PRS) that included 266 single-nucleotide polymorphisms (SNPs), and 223 measures of metabolites obtained from blood samples using nuclear magnetic resonance (NMR). A false discovery rate of 10% was applied to account for multiple comparisons. PRS was statistically significantly associated with 45 metabolite measures. These were primarily measures of very low-density lipoproteins (VLDLs) and high-density lipoproteins (HDLs), including triglycerides, cholesterol, and phospholipids. For example, the strongest effect was observed with the percent ratio of medium VLDL triglycerides to total lipids (0.53 unit increase in mean-standardized ln-transformed percent ratio per unit increase in PRS; q = 0.1). While larger-scale studies are needed to confirm these results, this exploratory study presents biologically plausible findings that are consistent with previously reported associations between lipids and breast cancer risk. If confirmed, these lipids could be targeted for lifestyle and pharmaceutical interventions among women at increased genetic risk of breast cancer.