A System Biology Approach Reveals New Targets for Human Thyroid Gland Toxicity in Embryos and Adult Individuals

Author:

Oliveira Jeane Maria1ORCID,Zenzeluk Jamilli1,Serrano-Nascimento Caroline23ORCID,Romano Marco Aurelio1,Romano Renata Marino1ORCID

Affiliation:

1. Department of Medicine, Laboratory of Reproductive Toxicology, State University of the Midwest (UNICENTRO), Alameda Élio Antonio Dalla Vecchia, nº 838, Guarapuava 85040-167, PR, Brazil

2. Institute of Environmental, Chemical and Pharmaceutical Sciences (ICAQF), Department of Biological Sciences, Federal University of São Paulo (UNIFESP), Rua Professor Arthur Riedel, 275, Diadema 09972-270, SP, Brazil

3. Department of Medicine, Laboratory of Molecular and Translational Endocrinology Medicine, Federal University of São Paulo (UNIFESP), Rua Pedro de Toledo, 669-11º andar-L11E, São Paulo 04039-032, SP, Brazil

Abstract

Compounds of natural or synthetic origin present in personal care products, food additives, and packaging may interfere with hormonal regulation and are called endocrine-disrupting chemicals (EDCs). The thyroid gland is an important target of these compounds. The objective of this study was to analyze public data on the human thyroid transcriptome and investigate potential new targets of EDCs in the embryonic and adult thyroid glands. We compared the public transcriptome data of adult and embryonic human thyroid glands and selected 100 up- or downregulated genes that were subsequently subjected to functional enrichment analysis. In the embryonic thyroid, the most highly expressed gene was PRMT6, which methylates arginine-4 of histone H2A (86.21%), and the downregulated clusters included plasma lipoprotein particles (39.24%) and endopeptidase inhibitory activity (24.05%). For the adult thyroid gland, the most highly expressed genes were related to the following categories: metallothionein-binding metals (56.67%), steroid hormone biosynthetic process (16.67%), and cellular response to vascular endothelial growth factor stimulus (6.67%). Several compounds ranging from antihypertensive drugs to enzyme inhibitors were identified as potentially harmful to thyroid gland development and adult function.

Funder

CAPES Brazil

CNPq—Brazil

FAPESP

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3