A Multiomics, Molecular Atlas of Breast Cancer Survivors

Author:

Bauer Brent A.1ORCID,Schmidt Caleb M.23,Ruddy Kathryn J.1,Olson Janet E.1,Meydan Cem4,Schmidt Julian C.23,Smith Sheena Y.4,Couch Fergus J.1,Earls John C.4,Price Nathan D.45,Dudley Joel T.4ORCID,Mason Christopher E.4ORCID,Zhang Bodi4,Phipps Stephen M.4,Schmidt Michael A.23ORCID

Affiliation:

1. Mayo Clinic, Rochester, MN 55905, USA

2. Sovaris Aerospace, Boulder, CO 80302, USA

3. Advanced Pattern Analysis and Human Performance Group, Boulder, CO 80302, USA

4. Thorne Research, Inc., Summerville, SC 29483, USA

5. Buck Institute for Research on Aging, Novato, CA 94945, USA

Abstract

Breast cancer imposes a significant burden globally. While the survival rate is steadily improving, much remains to be elucidated. This observational, single time point, multiomic study utilizing genomics, proteomics, targeted and untargeted metabolomics, and metagenomics in a breast cancer survivor (BCS) and age-matched healthy control cohort (N = 100) provides deep molecular phenotyping of breast cancer survivors. In this study, the BCS cohort had significantly higher polygenic risk scores for breast cancer than the control group. Carnitine and hexanoyl carnitine were significantly different. Several bile acid and fatty acid metabolites were significantly dissimilar, most notably the Omega-3 Index (O3I) (significantly lower in BCS). Proteomic and metagenomic analyses identified group and pathway differences, which warrant further investigation. The database built from this study contributes a wealth of data on breast cancer survivorship where there has been a paucity, affording the ability to identify patterns and novel insights that can drive new hypotheses and inform future research. Expansion of this database in the treatment-naïve, newly diagnosed, controlling for treatment confounders, and through the disease progression, can be leveraged to profile and contextualize breast cancer and breast cancer survivorship, potentially leading to the development of new strategies to combat this disease and improve the quality of life for its victims.

Funder

John P. and Carole E. Gregory Foundation

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3