Metabolomics Changes in Meat and Subcutaneous Fat of Male Cattle Submitted to Fetal Programming

Author:

Fernandes Arícia Christofaro1ORCID,Polizel Guilherme Henrique Gebim1ORCID,Cracco Roberta Cavalcante1,Cançado Fernando Augusto Correia Queiroz1,Baldin Geovana Camila1ORCID,Poleti Mirele Daiana2ORCID,Ferraz José Bento Sterman2,Santana Miguel Henrique de Almeida1ORCID

Affiliation:

1. Department of Animal Science, College of Animal Science and Food Engineering, University of São Paulo (USP), Av. Duque de Caxias Norte, 225, Pirassununga 13635-900, SP, Brazil

2. Department of Veterinary Medicine, Faculty of Animal Science and Food Engineering, University of São Paulo (USP), Av. Duque de Caxias Norte, 225, Pirassununga 13635-900, SP, Brazil

Abstract

This study investigated changes in meat and subcutaneous fat metabolomes and possible metabolic pathways related to prenatal nutrition in beef cattle. For this purpose, 18 Nellore bulls were used for meat sampling and 15 for fat sampling. The nutritional treatments during the gestation were: NP—not programmed or control, without protein-energy supplementation; PP—partially programmed, with protein-energy supplementation (0.3% of body weight (BW)) only in the final third of pregnancy; and FP—full programming, with protein-energy supplementation (0.3% of BW) during the entire pregnancy. The meat and fat samples were collected individually 24 h after slaughter, and the metabolites were extracted using a combination of chemical reagents and mechanical processes and subsequently quantified using liquid chromatography or flow injection coupled to mass spectrometry. The data obtained were submitted to principal component analysis (PCA), analysis of variance (ANOVA), and functional enrichment analysis, with a significance level of 5%. The PCA showed an overlap between the treatments for both meat and fat. In meat, 25 metabolites were statistically different between treatments (p ≤ 0.05), belonging to four classes (glycerophospholipids, amino acids, sphingolipids, and biogenic amine). In fat, 10 significant metabolites (p ≤ 0.05) were obtained in two classes (phosphatidylcholine and lysophosphatidylcholine). The functional enrichment analysis showed alterations in the aminoacyl-tRNA pathway in meat (p = 0.030); however, there was no pathway enriched for fat. Fetal programming influenced the meat and fat metabolomes and the aminoacyl-tRNA metabolic pathway, which is an important candidate for the biological process linked to meat quality and related to fetal programming in beef cattle.

Funder

São Paulo Research Foundation

National Council for Scientific and Technological Development

Publisher

MDPI AG

Subject

Molecular Biology,Biochemistry,Endocrinology, Diabetes and Metabolism

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3