In-Situ Metabolic Profiling of Different Kinds of Rheum palmatum L. by Laser Desorption–Dielectric Barrier Discharge Ionization Mass Spectrometry Imaging

Author:

Xiao Xue12,Guan Xiaokang3ORCID,Xu Zhouyi4ORCID,Lu Qiao12

Affiliation:

1. Department of Laboratory Medicine, Taihe Hospital, Hubei University of Medicine, Shiyan 442000, China

2. Hubei Key Laboratory of Wudang Local Chinese Medicine Research, Hubei University of Medicine, Shiyan 442000, China

3. Discipline of Intelligent Instruments and Equipment, Xiamen University, Xiamen 361005, China

4. Pen-Tung Sah Institute of Micro-Nano Science & Technology, Xiamen University, Xiamen 361005, China

Abstract

With its high resolving power and sensitivity, mass spectrometry is considered the most informative technique for metabolite qualitation and quantification in the plant sciences. However, the spatial location information, which is crucial for the exploration of plant physiological mechanisms, is lost. Mass spectrometry imaging (MSI) is able to visualize the spatial distribution of a large number of metabolites from the complex sample surface in a single experiment. In this paper, a flexible and low-cost laser desorption–dielectric barrier discharge ionization-MSI (LD-DBDI-MSI) platform was constructed by combining an LD system with an in-line DBDI source, a high-precision sample translation stage, and an ambient mass spectrometer. It can be operated at a spatial resolution of 20 μm in an atmospheric environment and requires minimal sample preparation. This study presents images of in-situ metabolic profiling of two kinds of plants from different origins, a wild and a farmed Rheum palmatum L. From the screen of these two root sections, the wild one presented five more endogenous molecules than the farmed one, which provides information about the differences in metabolomics.

Funder

National Natural Science Foundation of China

Hubei Provincial Natural Science Foundation of China

The Open Project of Hubei Key Laboratory of Wudang Local Chinese Medicine Research

Faculty Development Grants from Hubei University of Medicine

Publisher

MDPI AG

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3